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13.0 DEALING WITH DENSITY-DEPENDENCE

13.1 Introduction

"Density-dependence" is a convenient label for the notion t h a t
populations cannot increase in size indefinitely. Eventually some r e s o u r c e
becomes limiti ng and the population tends to level off. In long- l i ved
vertebrates, early survival is often the first parameter to change w i t h
increasing abundance. The best known model for a dens i t y -dependen t
response is the logistic equation (eq. 12.12 and 12.26) described in Section 12.3
and 12.5. The resulting curve (Fig. 12.3) shows a smooth approach to a n
asymptote (usually denoted by K). A major problem in applying the logist ic
equation is that the rate of increase (r) declines continuously throughout t h e
growth of the population, approaching zero as the population size a p p r o a c h e s
K. This behavior is evident from the underlying differential equation, but i s
perhaps more conveniently exhibited in the analogous difference equa t i on
(eq. 12.25) where it can be seen that

                                           r r
N

K
t= −1 1( )

so that when population size is small relative to K, r is nearly at the max imum
value, r1, which is sometimes appropriately labeled rm a x.

The logistic curve became popular after Raymond Pearl (1926 ) used it t o
describe the growth of yeast populations. While it may be useful as a model f o r
growth of populations of some organisms, the logistic is g e n e r a l l y
unsatisfactory as a model for growth of populations of large vertebrates. Th is
is because, in practice, the rate of increase tends to be relatively constant o v e r
much of the range of population size and then begins to decrease as t h e
asymptotic value is approached. For this reason, a "generalized logistic" c u r v e
provides a much more satisfactory model for large vertebrates. For this model,
r holds nearly constant over much of the range of population g r o w t h ,
declining quite steeply as the asymptotic level (K) is approached. T h e
generalized logistic is written as a difference equation:

Note the change in notation from t-1 and t used in Chapter 12 to t and t+1. Th is
is done to conform to the notation used in references cited below. When z= 1
the rate of increase is as given above, i.e., the rate for the oridinary logist ic,
written as a difference equation. A comparison (Fig. 13.1) of the two rates o f
increase (for z=1 and z= 5) shows why the generalized logistic yields a
population growing at a relatively constant rate up until the “ c a r r y i n g
capacity” level (K) is approached, and is thus a better model for popu la t ion
growth of the long-lived vertebrates, which generally appear to have a
relatively constant growth rate at levels below carrying capacity.

In considering density dependence it is important to have in mind some
characteristics of different groups of species. Much of the current l i t e r a t u r e
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deals with invertebrates, where very high rates of increase can lead t o
chaotic-seeming behavior of populations. At the other extreme are the l o n g -
lived vertebrates with relatively low growth rates that usually result in less
erratic behavior. Many (but not all) species of fish can achieve high g r o w t h
rates and may thus follow patterns closer to those of invertebrates. Many o f
the smaller vertebrates have short generation times and thus lack t h e
stabilizing qualities of age-structured populations and can also s h o w
substantial year-to-year fluctuations in abundance. Consequently, some of t h e
complexities in the current literature may not be relevant when c o n s i d e r i n g
the long-lived vertebrates, and attempts to apply models derived from studies
of invertebrates to vertebrate populations may be quite unsatisfactory.

Fig. 13.1 Comparison of rate of increase for the ordinary and  generalized logistic growth
curves.

Unfortunately, there isn't much in the way of accurate and precise da ta
on population growth in large vertebrates over a wide range of popu la t ion
sizes, making it difficult to demonstrate directly that population growth i s
more like the generalized logistic curve than the ordinary logistic. However, i f
one considers Fig. 13.1 and notes that many vertebrate populations do a p p e a r
to grow exponentially over much of the observed range, the ordinary logist ic
is much less palatable. Experience with harvested populations also shows t h a t
the ordinary logistic will not support observed rates of removals. It is d i f f i cu l t
to settle on a value of z, the parameter governing the rate of decrease in r w i t h
increasing population size. Often one must make an arbitrary choice. I n
developing guidance for managing cetaceans, the International W h a l i n g
Commission considered various values of z. The value used in various examples
here is z=5.0,  which gives the maximum numerical increment of growth a t
70% of K. Because the details of density-dependent responses and "popu la t ion
regulation" are so poorly known for large vertebrates, about all that can b e
done here is to try to supply some guidance for practical approaches to t h e
subject. The basic assumption is made that populations do not g r o w
indefinitely, and thus are somehow limited.
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13.2 Some historical aspects

Hairston, Smith, and Slobodkin (1960) produced an a l l- e m b r a c i n g
analysis, starting with the premise that energy is not accumula ted
significantly in organic matter, and working up from there to conc lus ions
about major trophic levels. Two critiques of their paper then a p p e a r e d
(Ehrlich and Birch 1967, and Murdoch 1966), and were rebutted by the o r i g i n a l
authors (Slobodkin, Smith, and Hairston 1967). The rebuttal extends t h e
original thesis somewhat and makes for interesting reading. All of t h e s e
papers depend on qualitative assessment of limiting cases and are thus n o t
very helpful in deciding what controls a specific population. One might, f o r
example, agree that predators as a class are food-limited, without a b a n d o n i n g
the notion that particular predatory species seldom increase beyond b o u n d s
imposed by behavioral (territorial) constraints.

Andrewartha and Birch (1954) offered the strongest objections to t h e
idea of density-dependence. Various critics of their views emphasized t h e i r
primary involvement with insects and that many of their conclusions d e p e n d
on events observed near the geographic limits of particular species, w h e r e
"limitation by catastrophe" probably does control populations. That this is a n
over-simplification of their views was vigorously pointed out by both au tho rs ,
individually and jointly. Some amelioration of the original stand seems ev i den t
in later papers by Andrewartha and Birch. In any case, their work h a s
provided useful evidence that many factors may interact to limit popula t ions,
not the least of which is the effect of essentially random "shocks" f r o m
weather conditions. Murdoch (1994:284) claimed that the “decades-old
controversy about regulation has been resolved in recent years”, sugges t i ng
that the “Nicholson school was right that regulation via stabilizing dens i t y -
dependent processes is essential to account for species persistence” but t h a t
“the local randomness and spatially out-of-phase dynamics emphasized by t h e
Andrewarthan school can create the necessary stabilizing dens i t y -
dependence” .

V.C.Wynne-Edwards promulgated what might be said to be a u n i v e r s a l
solution -- that social factors, frequently expressed as territorialism, c o n t r o l
population size. His thesis closely parallels the wildlife management p r i n c i p l e
of carrying-capacity, and fits nicely with a readily observed aspect of t h e
behavior of many species. There are, however, too many situations in w h i c h
territorial behavior does not seem to be either pronounced or e f fec t ive ,
perhaps most notable among the larger herbivores. Wynne-Edwards '
philosophy is expounded at length in a large book (1962), and compactly in a
later paper. Several authors have considered that a weak point in his theme i s
an invocation of group-selection as a necessary evolutionary device to i n s u r e
success of regulation by territorialism.

A specific physiological mechanism for population regulation w a s
proposed by J.J.Christian, and then tied to social aspects (Christian and Davis
1964). Objections to the "adrenal function" theory have centered a r o u n d
apparent absence of enlargement of the adrenal glands under s i tua t ions
where it would seem to be called for by the current status or ultimate fate of a
particular population. D. Chitty has been particularly explicit on this p o i n t
(see the discussion and references in Christian and Davis 1964). Chitty's o w n
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attitude on the matter of regulation appeared mostly to have been one of a
rather reluctant invocation of a genetic mechanism, at least to handle t h e
problem of cyclic crashes of lemmings and voles. The most detailed exposi t ion
of his "polymorphic behavior" mechanism was by one of his students (K rebs
1964) who contrasted that theory with Christian's stress hypothesis and a food-
supply hypothesis offered by Pitelka (cf. Pitelka 1958).

One of the apparent reasons for Chitty's belief in a change in quality i n
vole populations during a decline is the evident necessity for some de le ter ious
factor that persists through more than one generation in order to bring t h e
population down to the low levels observed in the field. In a long-term study o f
the vole, Microtus ca l i fornicus , Pearson (1966) came to the conclusion t h a t
such a factor is supplied by predation. He contended that some o t h e r
(unspecified) cause is responsible for the initial decline, but that p reda t i on
then acts to reduce the population to very low levels, whereupon the p reda to rs
then die off (in the Arctic) or shift to other prey (in temperate regions).

A feature not sufficiently stressed in many analyses of popu la t ion
regulation is that of evolutionary forces. A valuable review of the i m p o r t a n c e
of studying evolutionary ecology is that of Lack(1965). One of his more t e l l i n g
points is that few real opportunities remain to study ecological processes in a
sufficiently natural state that one might hope to appraise selective forces f r e e
of changes due to human influence.

Even a short excursion into the literature is sufficient to show t h a t
there are many views of population regulation. It seems reasonable to suppose
that, just as a variety of life forms has evolved, so may have a range o f
controlling mechanisms. The actual structuring of a population model m a y ,
however, call for a specific choice of mechanism, particularly if r e l a t i ve l y
long spans of time are to be dealt with. On the other hand, if we choose a
mathematical relationship to represent population regulation without good
evidence that it represents a mechanism actually existing in the popu la t ion ,
then we are really deciding the outcomes of the modelling exercise in advance ,
so that it may have little relevance to the actual population.

13.3 Testing for density-dependence

If a population appears to level-off, it may be  desirable to have a
statistical test to demonstrate that the apparent tendency is not due to c h a n c e
fluctuations alone. There is a very large literature on testing for dens i t y -
dependence, but the results are as yet often ambiguous and controversial f o r
large vertebrates. This is perhaps less true for smaller organisms, p a r t i c u l a r l y
insects. Due to the very different life histories involved, suitable tests f o r
density-dependence for insects should not necessarily hold for larger species.
In particular, most insect populations are capable of very high rates o f
increase, as are some fish populations. A density-related response may t h u s
occur over a short time span and be readily evident in the data.

One supposed test for density-dependence has been repeatedly shown t o
be of dubious value over the last 30 years or so, but still turns up in t h e
literature. No doubt this is because the approach is simple and seems natural. I t
consists of estimating λ  from the ratio of two successive population est imates,
λ t = Νt/N t-1, and then calculating the correlation coefficient of λ t and Nt-1 o n
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a series of such estimates. If λ t is negatively correlated with Nt-1, then o n e
might assume density-dependence is involved as λ t apparently decreases w i t h
increasing population size. The difficulty, however, is that values of Nt a p p e a r
successively in the numerator and denominator of the ratio determining λ t
and this induces a spurious correlation. This prospect was discussed for i nsec ts
by Watt (1964), and some additional examples were noted by Eberhardt (1970).

There has been considerable interest in testing for density d e p e n d e n c e
for the last 30-40 years, but it remains uncertain whether density d e p e n d e n c e
can be reliably detected from a sequence of data on population size or t r e n d
alone. Many of the slower-growing populations appear to increase f a i r l y
smoothly from low levels, and ultimately show signs of leveling-off. Those
with high growth rates may behave quite erratically, making it difficult t o
discern any pattern. Most of the efforts to devise tests appear to have b e n n
inspired by studies of populations showing rather erratic growth pa t t e rns ,
particularly insect populations. Nearly all of the recent efforts proceed a l o n g
the lines of statistical hypothesis-testing. Most of the available stat ist ical
methodology for conducting such tests is based on linear models, and t h i s
limits the range of models that can be considered. Most of the tests depend o n
taking logarithms (base e, usually) of population size, which g e n e r a l l y
appears to yield symmetrical distributions of deviations from the model, a n d
thus encourages assuming normally distributed errors (a n e c e s s a r y
assumption in many of the tests). Statistical hypothesis testing depends o n
setting up a “null” model and attempting to reject that model in favor of a n
alternative model. Rejecting the null model does not demonstrate that t h e
alternative model is correct, a fact that sometimes appears to be overlooked i n
the ecological literature. Because the null model generally needs to be l i n e a r
and fairly simple in form, the process more or less restricts attention to two
models, both linear and quite simple. In some cases, “nested” models may b e
considered, giving a little more flexibility.

A number of authors have used the following model for dens i t y
dependence :

Where 0<b<1, and K is the asymptotic value. An example of the resulting c u r v e
is shown in Fig. 13.2. Taking logarithms gives the model commonly used i n
studying density dependence:

Here X denotes the logarithm of N and b and K are as given above. I n
producing statistical tests, an error term (ε), assumed to be n o r m a l l y
distributed with some variance is added. Bulmer (1975) wrote the a b o v e
equation in terms of deviations from µ  = log K:

                                                 X b Xt t t+ − = − +1 µ µ ε( )

N N Kt t
b b

+
−=1

1( )                                       (13.2)

X bX b Kt t e+ = + −1 1( ) log                                              (13.3)
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Bulmer’s is one of the more widely quoted papers on testing for dens i t y
dependence. He used the null model (described as a “random walk” model:

                                                          X Xt t t+ = +1 ε

Fig. 13.2  An example of curves represented by Eq. (13.2). K=5,000, b=0.95.

Pollard et al. (1987) used the same models, but added another null model,
described as a “random walk with drift”:

                                                           X X rt t t+ = + +1 ε                                           (13.4)

It is important to note that this is the logarithmic form of the usual model f o r
exponential growth (over one unit of time) with a multiplicative error term (ε t

=loge et) :

                                                           N N r et t t+ =1 exp( )

Pollard et al. use the three models [one, eq. (13.3) representing dens i t y
dependence and the  two null models above] in “nested” form, so the tests c a n
presumably be used to choose among the 3 models. Examples of the r a n d o m
walk and random walk with drift are shown in Fig. 13.3 and 13.4.
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Fig. 13.3  An example of the random walk model used as a null model in various tests f o r
density dependence.

Fig. 13.4  An example of a random walk with drift null model (Eq. (13.4)).

An example of the linear (log scale form) of eq. (13.3) with an additive e r r o r
term appears in Fig. 13.5.
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Fig. 13.5 . An example of the linear model of eq.(13.3) with an additive error term

The sizable cluster of points on the right results from the substantial section o f
the underlying curve (Fig. 13.2 ) close to the asymptotic value.

Some problems with the approach to testing density dependence with t h e
models illustrated above can be seen by comparing the basic model (eq. 13.2)
and Fig. 13.2) with the generalized logistic of eq. (13.1). Making s u c h
comparisons requires a comparable set of parameters. This can be obtained b y
choosing parameter values that give similar values of λ  for the models o f
eqs.(13.1) and (13.2). Values of λ for long-lived vertebrates may range up t o
about λ = 1.5 but are often close to 1.2. Rearranging eq.(13.2) gives:

                                        λ t
t

t
t
b b

t

bN

N
N K

K

N
= = =

+

− − −

1

1 1 1( )

and values (Fig. 13.6) of b=0.95 and b=0.98 fall in this range (up to λ  = 1.5).
Comparing the generalized logistic with these two curves (Fig. 13.7) shows t h e
sharp difference between eq.(13.1) and eq. (13.2). Using smaller values of b
shifts plots of eq. (13.2) to the left but yields the much larger values o f
λ characterizing insects and some species of fish.
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Fig. 13.6  Lambda for density dependence model used by Bulmer (1975) and Pollard et al.
(1987) compared with lambda for a generalized logistic curve. Values of b used here are much
larger than those encountered in studies of invertebrates in order to obtain values of λ in the
range expected for long-lived vertebrates.

Fig. 13.7. Comparisons of curves from eq. (13.1) and a plot of the generalized logistic (broken
line above). Generalized logistic curve based on lambda 1.2 and z = 5.0.

A basic issue thus is that the curves are quite different, so that t h e r e
may be a question about efficiency of the test if the alternative model r e a l l y
should be more like the generalized logistic than like eq.(13.1). A n o t h e r
important issue is that the generalized logistic curve behaves essentially as a n
exponential curve for the lower part of its range (see Fig. 13.1), so one would
expect that the null model of eq. 13.4  would not be rejected for a popu la t ion
growing in the lower part of its range. Thus the test would have essent ia l l y
zero power of detecting density dependence in an important portion of t h e
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range of growth. This is not necessarily true for eq. (13.2) as λ  is large a n d
changes dramatically in the early growth phase for smaller values of b. H e n c e
the tests may be effective for insects and fail for long-lived vertebrates.

Dennis and Taper (1994) proposed tests for a more complex model of t h e
following form:

                                                     N N a bN Zt t t t+ = + +1 exp( )σ                                    (13.5)

where b < 0  and Zt is assumed normally distributed with zero mean and u n i t
variance, while σ is a constant that lets one choose the variance of the t h e
error term. Taking logarithms gives:

                                                          X X a be Zt t
X

t
t

+ = + + +1 σ                                   (13.6)

This model is thus nonlinear (because of the exponential term), making f o r
“intractable” distributions of test statistics. Dennis and Taper got around t h e
problem by using bootstrapping and some simulations to check their resu l ts .
The model of eq.(13.5) is equivalent to one used by W.E. Ricker (1975) to s tudy
stock-recruitment in fish [essentially the relationship between size of a
parental generation (stock) and the succeeding generation ( rec ru i t s ) ] .
Without the error term, eq.(13.5) can be written as:

                                           N N et t

r
N

K
t

+

−
=1

1( )

where r is the growth rate and K is the asymptotic value. If r is in the range o f
growth for most long-lived vertebrates (say 0 < r < 0.5) then a good
approximation to the above curve can be obtained by using the first two t e r m s
of the Taylor series expansion of the exponential term above, obtaining:

                                          N N rN
N

Kt t t
t

+ = + −1 1( )

which is the discrete from of the logistic growth curve (more details a r e
available in Eberhardt 1977).  This brings the model of Dennis and Taper (1994)
closer to the kind of growth curve one might expect would hold for l ong- l i ved
vertebrates. However, they also use nested models with the same random w a l k
and random walk with drift (eq. 13.4) used above. Hence, if the genera l i zed
logistic actually is the best model for a given population, then the power of t h e
test for populations at the lower end of the growth range is again essent ia l l y
zero, as discussed above.

Further difficulties with the recent approaches to testing for dens i t y
dependence were proposed by Shenk et al. (1998) who used c o mp u t e r
simulations designed to mimic the incorporation of sampling error in the data.
In most assessments, the error term is assumed to be due to “changes in c l imate
and other environmental factors” (Bulmer 1975), although Bulmer did
consider sampling error in one of his tests. Shenk et al. concluded t h a t
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“because these tests have been shown to be either invalid when only s a m p l i n g
variance occurs in the population abundances (Bulmer’s R, Pollard et al.s’s
and Dennis and Taper’s tests) or lack power (Bulmer’s R* test), l i t t le
justification exists for use of such tests to support or refute the hypothesis o f
density dependence”. It seems likely that their results will not be the last w o r d
on the issue, inasmuch as it is possible to estimate the contribution of s a m p l i n g
error in at least some circumstances, and also because they chose to use a
model of a large mammal population to simulate density dependence in t h e i r
analyses, while most of the methodology described above seems most
appropriate for insect populations.

Only a brief sketch of apparent problems in testing for dens i t y
dependence has been attempted here. Clearly the suggested difficulties need t o
be examined in more detail. This calls for assessments of the actual tests a n d
thus brings in the subject of likelihood ratio testing.

13.4 Population regulation

A  broader view of the issues involved in testing for density d e p e n d e n c e
was taken by Murdoch (1994). He discussed population regulation, “ w h i c h
arises as a result of potentially stabilizing density-dependent processes, e v e n
when brought about by ‘non-equil ibrium’ mechanisms”. He de f ined
regulation very broadly, stating “Population regulation seems best defined b y
defining non-regulation, which is random walk dynamics”. He de f ined
random walk in the form described above as random walk with drift” (eq.13.4)
and thus espoused the null model of exponential growth. Such a population i s
unbounded (i.e., increases indefinitely) and thus Murdoch stated that “we c a n
identify regulation with boundedness”. Because nearly all popu la t ions
(excepting perhaps humans) appear to be bounded, p rac t i ca l -m inded
observers  may see little reason to study density dependence. However ,
Murdoch suggested several possibilities for modes of population change t h a t
may transcend the simpler concepts of density dependence. He noted t h a t
regulated populations “thus include not only those with a stable e q u i l i b r i u m
but also those with a stable attractor, i.e., cyclic or chaotic populations”. A
cyclic model was described here by eq.(12.33) and (12.34) and illustrated in t h e
upper panel of Fig. 12.4.  Another very interesting concept for r e g u l a t i o n
without apparent density dependence can be developed by considering a
metapopulation in which isolated subpopulations follow a random w a l k
(without “drift”) and ultimately go extinct but with the area they occup ied
later recolonized by immigration from another distinct population. Mu r d o c h
(1994:275) commented that “little can be inferred from a statistical analysis o f
the time series of a single population. Thus if we are interested in e x p l o r i n g
regulation in a particular population we need to investigate the m e c h a n i s m s
di rec t ly . ”

Murdoch (1994) reported the results from  assessments of a l a r g e
number of sets of data on small bird populations that found the populations t o
be remarkably stable. He commented that “The remarkable invariance of t h e s e
bird populations makes it difficult to believe that they are not in fact we l l
regulated. If they are, we clearly have still not developed adequate means o f
detection”. From a statistical point of view, there is little or no prospect o f
detecting tight regulation from an analysis of the time series of observa t ions
alone. This is essentially proposing to prove a null hypothesis holds, when w e
can only reject a hypothesis through statistical analysis. Another example o f
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this problem concerning an elk population is discussed in Section 14.6 . In t h a t
example there is good evidence of a strong climatic effect that results i n
dramatic changes in first-year survival, yet the population trend is far less
variable than would be expected. Our tentative conclusion is that high s u r v i v a l
of adults “buffers” the effect of variable first-year survival, and that there is a
strict upper limit on first-year survival enforced by the avail abili ty of w i n t e r
thermal refugia. Examination of population trends can only show that there i s
much less population variability than one would expect on the basis o f
environmental data (30 years of snow depth data are available) so that t h e
main prospect for assessing density effects is by direct measurement o f
population parameters. Detecting regulation then requires that t h e
populations somehow be perturbed and essential parameters monitored d u r i n g
the return to an equilibrium condition.

13.5 Testing for a maximum net productivity level.

Thus far we have seen that the prospects for detecting dens i t y
dependence from a series of measurements of population trend are p r e s e n t l y
doubtful. In the present section, we assume that density dependence does
prevail in a population and seek a means to determine how it affects t h e
current trend. An important practical problem is to determine status of a
population with respect to the maximum net productivity level (MNPL). This i s
the point where the slope of the s-shaped curve of population growth shows a
change in rate of change of the slope (the inflection point of the c u r v e ) .
Determining status of a population with respect to this level is important f o r
several reasons. One is that the maximum sustainable yield (MSY) of a
population can be taken at this level, a second is that this point figures i n
legislation that requires managing populations at or above that level ( f o r
example, the Marine Mammal Protection Act of 1972), and a third is t h e
evidence (suggested in Section 13.3) that there likely is little prospect o f
detecting density dependence using the approaches presently in the l i t e r a t u r e
when a population is below the inflection point in the growth curve. It i s
important to stress that the test suggested here depends on assuming that an s -
shaped growth curve does govern the trend of a particular population, i.e.,
that we assume density dependence exists.

The basis for the test is to attempt to ascertain whether the re c e n t
trend of the population traces out a curve that is concave upwards (be low
MNPL) or concave downwards (above MNPL). This approach thus assumes an s -
shaped growth curve and the existence of density dependence. The test has two
stages and depends on the approximate test for curvil inearity given in Sect ion
1.7.  In the first stage, a straight line and second degree polynomial are fit t o
untransformed data. If the test for curvature is significant, we conclude t h a t
the population is below MNPL. If the test is not significant on data in t h e
arithmetic scale, then we transform to the log scale and repeat the test.
Significance suggests the population is above MNPL. The test was studied w i t h
simulations based on the assumption that the generalized logistic applies t o
first-year survival according to eq. 13.7.

                                                           s s
N

K
t z

1 0 1= −[ ( ) ]                                              (13.7)
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Here N, K, and z are as before and so is a constant while s1 denotes f i r s t - y e a r
survival. This general approach was later used in the simulations of Shenk e t
al. (1998).  More details on the test and simulation are available in E b e r h a r d t
(1992). The approach essentially depends on the fact that the usual g r o w t h
curve is concave upwards below MNPL and concave downwards above MNPL.
However, transformation to the logarithmic scale yields a curve that is n e a r l y
a straight line below MNPL but remains concave downwards above that p o i n t
(cf. Eberhardt 1992:Fig. 3), and this seemed to improve the power of the tes t
(Eberhardt 1992).

13.6 Components of density dependent responses

If, as seems to be the case generally, one cannot reliably detect dens i t y
dependence from a sequence of measurements of population trend data, it w i l l
be necessary to examine the behavior of population parameters as t h e
population changes. Thus far there are relatively few sets of data that p rov ide
the necessary details. Some preliminary results can, however, be suggested. I t
appears to be a generally accepted principle that adult female survival is t h e
key to well-being of at least the populations of the long-lived vertebrates, a n d
quite possibly to most of the sexually reproducing species. Over 20 years ago i t
was proposed that there appears to be a sequence of changes in vital rates a s
population density increases towards maximal levels (Eberhardt 1977). L a t e r
studies support this sequence (Fowler 1981,1987, Gaillard et al. 1998). T h e
proposed sequence is given in Fig. 13.8.

With the advent of effective mark-and-recapture methods, p a r t i c u l a r l y
those employing radiotelemetry, it has become possible to obtain data on t h i s
sequence for a number of large mammal populations, and to estimate the r a t e
of change (λ ) from such data. Often the resulting estimate of λ  can be c h e c k e d
by direct estimates of population density over time, or through measures o f
relative abundance (indices of abundance). Inasmuch as most estimates f r o m
field data are subject to a variety of potential biases, it is very important t o
have estimates from both reproductive and survival data and f r o m
independent direct measures (census or index).

Immature                   Age of first           Reproductive rate             Adult mortality
mortality       >            reproduction    >    rate of adult females    >    rate
rates                           becomes                 reduced                                increased
increase                     increased

- - - - - - - -> - - - - - - - - - - - - -> - - - - - - - - - - - - - - - -> - - - - - - - - - - - - - - - - - - - - -> - - - - - - - - - - - - - - - - - ->
                              Order of events as population increases

- - - - - - - -> - - - - - - - - - - - - -> - - - - - - - - - - - - - - - -> - - - - - - - - - - - - - - - - - - - - -> - - - - - - - - - - - - - - - - - ->

Fig. 13.8  Sequence of events contributing to regulation as a population of long-lived
vertebrates increases in abundance.

For populations with little impact of human activities, adult f ema le
survival appears likely to be at least 0.94  and likely higher (Fig. 13.9). Many o f
the examples used here were subjected to impacts that likely reduced s u r v i v a l
below a feasible maximum. Consequently, it seems very likely that adult f ema le
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survival will be at least 94% and may be 99% or higher in the prime a g e
classes under truly undisturbed conditions. Such a high annual survival i s
necessarily accompanied by reductions in survival due to senescence w h i c h
may not always be taken into account in reported estimates of adult f ema le
su rv i va l .

Fig. 13.9. Frequency of adult female survival rates. Most of the examples are from large
mammal data, but a few are from long-lived birds. Dark bars represent species where there i s
reason to believe human influence might have a minor influence, while those represented by the
lighter bars likely were affected by modest human influences.

Under largely undisturbed conditions, it seems reasonably we l l -
established that a density-dependent response in long-lived vertebrates w i l l
initially be evident in first-year survival. Poor first-year survival n o r m a l l y
results in poorer physical condition which will, in turn, result in a delay i n
ages of first reproduction. It may well be that these two factors will b e
sufficient to control population growth without invoking the s u b s e q u e n t
stages of Fig. 13.8, but extreme conditions may well result in an impac t
reflected in all four stages. The Hawaiian monk seals of French Frigate Shoals
provide one example of this result (Section 14.5 and Example 13.1 below).

In Chapter 11 (Section 11.9) we considered a method for o b t a i n i n g
approximate variance estimates for the rate of population change (λ ). A n
essential component is estimating the partial derivatives of λ with respect t o
survival and reproductive rates (eq. 11.13).  These provide a measure of t h e
relative importance of such rates in determining population growth. T h e y
indicate that adult female survival is most important, with reproductive r a t e
next, and survival to reproductive age apparently least influential (Fig. 13.10).
We can thus speculate that, because long-lived vertebrates have re la t i ve l y
slow rates of population growth, early survival might be the best m e c h a n i s m
for at least initiating population regulation.

0 . 9 0 . 9 2 0 . 9 4 0 . 9 6 0 . 9 8 1
0

2

4

6

8

10

12

SURVIVAL RATE

F
R

E
Q

U
E

N
C

Y



                                                                                                                                      13.15

Figure 13.10 Relative importance of components of rate of population change for a number o f
species of long-lived vertebrates.

The evidence for reduced juvenile survival as the first parameter t o
change with increasing population density is now quite substantial. Gaillard e t
al. (1998:Table 1) reported that juvenile survival was implicated in 7 of 8
species for which there was evidence of density dependence. They noted t h a t
Fowler's (1987) review showed juvenile survival involved in 15 of 21 spec ies
for which density dependence was reported. A major problem in assessing da ta
from the literature is that the chronological sequence in which va r i ous
parameters change often cannot be determined from the reports, but it does
seem clear that changes in the age of first reproduction largely follow as a
consequence of the reduced resource availability leading to reduced e a r l y
su rv i va l .

Gaillard et al. (1998) presented data that showed much greater r e l a t i ve
variability (coefficient of variation) in juvenile survival (their Table 3) a s
contrasted to that of adult female survival (their Table 2). The likely cause o f
the higher variability in juvenile survival was illustrated by Gaillard et a l .
(1998:Fig. 1) as the sequence in time of adult female and juvenile s u r v i v a l
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rates. As density increased, juvenile survival decreased sharply, t h u s
substantially increasing the coefficient of variation. Gaillard et al. (1998)
noted that "only two island populations (Soay sheep and red deer) exh ib i ted
density dependence in adult survival" and that "Even for these two species,
survival of adult females varies much less than juvenile survival." Discussing
red deer, Saether (1997) pointed out that "the major density d e p e n d e n t
mortality losses occur among calves during their first winter", and that "This
pattern was found in three different studies of the species in both Europe a n d
North America". Gaillard et al.(2000) reviewed a substantially larger set of da ta
that confirmed the results of Gaillard et al. (1998) and ranked variability f r o m
highest in juvenile survival to lowest for adult survival.

Clutton-Brock et al. (1991) reported that "The persistent instability o f
the St. Kilda [Soay] sheep population is probably caused by their cons is ten t l y
high fecundity associated with a super-abundance of food in summer. I n
conjunction these may permit the population to pass through winter at a l eve l
close to carrying capacity; to increase as much as 50% during the s u b s e q u e n t
summer; and to enter the next winter at a level substantially higher than t h e
island can support".

A major problem in assessing the sequence proposed here is t h e
uncertainty as to the forces that regulated undisturbed populations b e f o r e
human interference became all-pervasive. The relative magnitudes of t h e
numerical values of the essential parameters (Fig. 13.10) indicate t h a t
"sensitivity" of λ  to parameter changes is least in early survival and g rea tes t
in adult survival, with reproductive rate in an intermediate position. It m i g h t
thus be supposed that this sequence may have some significance in a n
evolutionary sense. The notion of "r and K selection" has lost some of i t s
earlier preeminence, but nonetheless provides a convenient s h o r t h a n d
classification of species, with r-selected groups able to recoup losses in a v e r y
short period, and K-selected species requiring many years to recover f r o m
reductions in numbers. Consequently, it seems logical that selection in K -
selected species might favor a regulatory process that tends to m a i n t a i n
equilibrium numbers by small, rather than large, changes in λ , hence b y
modifying early survival. This argument is supported by the results of Gai l lard
et al. (2000) who evaluated temporal variation in “fitness components” of l a r g e
herbivores. These authors found that the coefficient of variation for e a r l y
survival was highest (0.64) in large herbivores and lowest for adult s u r v i v a l
(0.09). They suggested that “the immature stage … may be the c r i t i ca l
component of population dynamics for large herbivores”, indicating that “ o u r
review supports Eberhardt’s hypothesis and generalizes it to all sources o f
temporal variation”.

Three major forces can be proposed as influencing the l a r g e
vertebrates under "natural" conditions: weather, resources and predation. T h e
preponderance of evidence from demographic studies indicates that e a r l y
survival responds first to both severe weather and to resource limitations. As a
population begins to outstrip its resources, inclement weather may have a
much more pronounced effect, and may result in rather sharp fluctuations. A
key question is the possible regulatory role of predation. In most n a tu r a l
systems human interference severely limits opportunities to evaluate the  r o l e
of predation (Section 12.5). Wolf (Canis lupus) predation on ungulates has b e e n
observed to dominantly affect early survival and survival of s e n e s c e n t
individuals (Peterson 1977, Peterson et al. 1984:Fig. 5, Ballard et al. 1987:Fig. 16,
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Mech et al. 1998). To serve as a regulatory function, predation should exhibit a
direct relationship with prey density, increasing at high prey densities a n d
decreasing at lower prey numbers. The notion of ratio dependence (Matson
and Berryman 1992) may fulfill this requirement. Evidence has accumulated t o
favor the ratio dependence model in wolf-ungulate interactions (Ebe rha rd t
1997, 1998). The crucial question may then be whether predation tends to h o l d
ungulate populations below levels where weather and resource l imi ta t ions
become important. If so, then an evolutionary pattern may be implicated.

Example 13.1 Sequence of events in density dependence.

The illustration of the original development (Eberhardt 1977:Fig.
2) of the sequence of events indicated in Fig. 13.8 used data from a
number of sources. The Hawaiian monk seal population of French Frigate
Shoals (Section 14.5) illustrates the full sequence in a single
population. Trend of the French Frigate Shoals population through 1993
appears in Fig. 1.18, and was contrasted with the other sites by
Gilmartin and Eberhardt (1995). The population increased steadily until
sometime in the 1980’s, and then began a dramatic decline. The decline
was initially evidenced by finding malnourished pups, and a decreasing
first-year survival (Fig. 13.11).

Fig. 13.11 First year survival of monk seals on French Frigate Shoals.

High adult survival was recorded during the phase of population
increase (Gilmartin et al. 1993), but soon began a steady decrease. The
population is not a large one, so the number of weaned pups tagged each
year (a major effort is made to tag all pups at weaning) has averaged
around 40 individuals. Consequently sample size has an appreciable
effect on the numbers of older animals located (less than 10 individuals
in the data used here), as does the stochastic (chance) variation in
survival. Nonetheless, the pattern of decreasing survival is very
evident in logarithmic plots of numbers observed over the years (Fig.
13.12).
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Fig. 13.12. Logarithms of numbers of tagged seals recorded at French Frigate Shoals,
Northwest Hawaiian Islands, 1984 through 1989. Estimates of survival rates are shown f o r
each year-class. Because the numbers initially tagged (as weaned pups) are roughly the same,
the vertical scale has been adjusted so that the points do not overlap.

The survival rates given in Fig. 13.12 were obtained from the slopes of
logarithms of numbers of individuals returning to the Atoll each year.
More details on survival estimation appear in Gilmartin and Eberhardt
(1995). It appears that there has been a steady decrease in adult
survival rates, and this is, of course, evident in the population trend
(Fig. 1.18). It is particularly interesting that the first cohort tagged
(1984) apparently continues to have relatively good survival. The
decreasing trend in survival rates has continued, so that the cohort
tagged in 1996  exhibits an annual survival rate on the order of 40%.
Evidently the available food resource for this population has continued
to decline, and “carrying capacity” may not yet have been reached.

Due to relatively small sample sizes, it has not been feasible to
determine whether the sequence of events of Fig. 13.8 has occurred in
this population in precisely the order suggested, but clearly the
prescribed series of events has transpired. Age of first reproduction
clearly has been reduced, and it seems reasonably certain that the
overall reproductive success of adult females has decreased (Fig.
13.13).  The oldest tagged individuals in the overall population are now
about 18 years of age, so it is as yet to be determined when senescence
becomes important. The largest sample of reproductive data comes from
another site (Laysan Island, see map in Section 14.5), and suggests that
monk seals do not reach a reproductive peak until appreciably later than
other pinnipeds.
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Fig. 13.13  Reproductive rates for monk seals at Laysan Island and French Frigate Shoals.

It should be noted that this example very likely is not typical, in  the
sense that there is not sufficient information to determine what the
“typical” approach to an asymptotic population level might be. As noted
previously in this Chapter, it may be that a reduction in first year
survival and the (likely) concomitant delay in first reproduction may be
sufficient to cause a population to stabilize in the neighborhood of a
carrying capacity value. This is one of the issues that characterize the
limitations of the present state of knowledge about long-lived
vertebrates.

13.7 Exercises

13.7.1 Make plots of the rate of increase used in Eq. (13.1) and Fig. 13.1 f o r
r(1)=0.2 , z=1,2,5,11, and K=5000.

13.7.2  A model for density dependence.
Plot eq.(13.3) with b=0.95 and K=5000 and the log form of the genera l i zed
logistic [eq.(13.1)] with r(1)=0.2, z=5, and K=5000. Note  that you will need t o
rearrange eq.(13.1) to put it in a log form, and that you will need to use  e x p ( l n
X(t)) to represent N(t) in the portion of eq.(13.1) in brackets, inasmuch a s
exp(ln(x))=x.

13.7.3 Generating normal distributions.
A convenient way to generate normally distributed errors for studying dens i t y
dependence is given in the following equations:

                                                  
x r r

x r r
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where the x’s are random normally distributed values with mean 0 a n d
variance 1 and the r’s are uniform random variables (range 0-1). You c a n
obtain uniform random variables with the function RAND() in EXCEL ( n o t e
that you need the parentheses to generate uniform random variables but don ’ t
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need to enter a value in them). The above equations generate 2 random n o r m a l
variables from 2 uniformly distributed values. In doing largish simulations i t s
convenient to use both of the random normal numbers thus generated. Fo r
purposes of illustration, we need only use one. Set up a table of random n o r m a l
numbers using the above equations and try the random walk of Fig. 13.3,
using 100 values. Create a graph on the same EXCEL sheet and change t h e
values to see how the random walk changes. Note that the populations g o
extinct fairly regularly, whereas Fig. 13.3 shows an increasing popu la t ion .
EXCEL has a command that changes the random numbers to make a new g r a p h .
on occasion it is desirable to make the recalculation manual so as not to h a v e
the graph change while you are working on it.

Exercise 13.7.4  “Random walk with drift”.
Several of the papers referenced in this chapter discuss “random walk w i t h
drift” using eq.(13.4). It was noted in connection with eq.(13.4) that this r e a l l y
simulates an exponentially increasing population. Add another column to t h e
random normal numbers generated above which multiplies one of the r a n d o m
normal numbers by a constant so that you get an error term like that used i n
eqs.(13.5) and (13.6). Then add a constant to the random walk model above t o
construct results according to eq.(13.4), as shown in Fig. 13.4. Make a graph o f
the random walk model on the same EXCEL sheet. Vary the c o ns t a n t
multiplying the normal random variable from, say, 0.1 to 1 and note how i t
affects the graph of population size. With a small multiplier the graph shou ld
essentially follow an exponential plot (but on a log scale). With a l a r g e r
multiplier it becomes quite erratic.

Exercise 13.7.5  Rapid rates of increase.
It was noted in the Chapter that many of the papers on testing for dens i t y
dependence appear to be based on data on  insects. To examine this p rospec t ,
plot eq.(13.2) as shown in Fig. 13.2 with K=5000, but set it up with 3 c o lu m n s
and make a graph so you can compare different values of b. Try b=.95, a n d
b=.98 which should replicate Fig. 13.2 and part of Fig. 13.7. Now try values o f
b=0.5  to 0.8 to see how different the growth curves are.

Exercise 13.7.6 Lambda for rapid rates of increase.
Add 3 columns to the worksheet for Exercise 13.7.5  to show lambda for each o f
the population plots. This can be done with the equation given in the c ha p t e r ,
i.e.

                              λ t
t

t
t
b b

t

bN

N
N K

K

N
= = =

+

− − −

1

1 1 1( )

This shows why the growth curves of exercise 13.7.5  increase so rapidly.

Exercise 13.7.7 The generalized logistic.
Calculate the generalized logistic (eq.13.1) for K =5,000, z=5, r=0.2, 0.4, and K
=5,000, z=2, r=0.2, 0.4, and  make a graph of the results on the same workshee t .
Note the more rapid increase generated by r=0.4. One characteristic of t h e
generalized logistic is shown by the “overshoot” and oscillation for h i g h e r
rates of increase and larger values of z.
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Exercise 13.7.8 Bulmer’s tests
Some of the difficulties in testing for density dependence can be illustrated b y
considering Bulmer’s (1975) tests. The first test is based on the fact that t h e
squared differences between successive observations of population size can b e
used to approximate the overall variance of a set of observations, if there is n o
trend or pattern in the data. The test is essentially the Durbin-Watson test o f
eq. (9.13),  except that Bulmer used the reciprocal of the ratio, i.e., t h e
reciprocal of eq.(9.13). The table below gives the first 20 observations from t h e
generalized logistic used in Exercise 13.7.2,  20 observations bracketing t h e
inflection point, and 20 observations above the inflection point, along w i t h
logarithms of 20 observations from an exponential growth curve with N(0)=10,
r=0.20.

First 20 obsns
generalized
logistic

5 OBSNS OBSNS EXPONENTIAL
0.2 BRACKETING ABOVE MODEL

5000 INFLECTION INFLECTION N(0)=10
1 0 POINT POINT R=1.2

X(t) X(t ) X(t )
1 2.30259 7.04288 8.51718 2.30259
2 2.48491 7.22509 8.51719 2.48491
3 2.66723 7.40715 8.51719 2.66723
4 2.84955 7.58883 8.51719 2.84955
5 3.03187 7.76954 8.51719 3.03187
6 3.21419 7.94789 8.51719 3.21419
7 3.39651 8.12049 8.51719 3.39651
8 3.57884 8.27961 8.51719 3.57884
9 3.76116 8.40979 8.51719 3.76116

1 0 3.94348 8.48962 8.51719 3.94348
1 1 4.12580 8.51505 8.51719 4.12580
1 2 4.30812 8.51718 8.51719 4.30812
1 3 4.49044 8.51719 8.51719 4.49044
1 4 4.67277 8.51719 8.51719 4.67277
1 5 4.85509 8.51719 8.51719 4.85509
1 6 5.03741 8.51719 8.51719 5.03741
1 7 5.21973 8.51719 8.51719 5.21973
1 8 5.40205 8.51719 8.51719 5.40205
1 9 5.58437 8.51719 8.51719 5.58437
2 0 5.76669 8.51719 8.51719 5.76669

Bulmer’s first test is R=V/U where:
 

                   U x x V x xi
i
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=
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1

1
2

1

2   and     

He gives a way to calculate significance levels, which gives a value of 0.696 f o r
the 1 % point and 0.909 for the 5% point, where the test is significant if the R
is less than the stated significance point. Calculate Bulmer’s R test for  the f i r s t
three columns above and comment. Also comment on the meaning of a
comparison of the first and last columns (note that the data are available i n
your results for Exercise 13.7.2  so  you don’t have to copy the numbers above).
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Exercise 13.7.9. Bulmer’s second test.
Bulmer (1975) recognized that his R-test would not behave satisfactorily in t h e
presence of sampling error so devised a second test for that purpose, which i s
R*=W/V where:

W x x x xi i i
i

n

= − −+ +
=

−

∑( )( )2 1
1

2

He gives approximate criteria for significance as:

R
n n n

R
n n n

0 05 2 3

0 01 2 3

13 7 139 613

20 1 258 1279

.
*

.
*

.

.

= − + −

= − + −

and indicates significance if R* is less than the calculated significance leve l .
Try this on the first 20 observations for the generalized logistic as given i n
Exercise 13.7.8 and comment on your results.


